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                         Non-Euclidean Electromagnetic Kerr Model for Hydrogen 

 

                                                              Abstract 

A Balmer series of observed hydrogen data was compared to two geometric levels of atomic 

theory and modeling. The first theory compared was the Euclidean-based, special relativistic 

Dirac theory, with QED corrections added. The second theory applied was a non-Euclidean 

electromagnetic Kerr field theory with Euclidean QED corrections added. Each model was used 

to predict the Balmer series transition wavelengths, and then compared to the observed data. The 

statistics for the model performances were computed, and show a noticeable increase in accuracy 

and precision of the model predictions using the non-Euclidean Kerr field theory with QED 

compared to Euclidean Dirac theory with QED. These results suggest Euclidean Dirac theory is 

too restrictive/special and does not incorporate an important relativistic contributor. According to 

non-Euclidean field theory, the time dilation the electron experiences is a function of not only its 

velocity (as in Dirac theory), but time dilation is also a function of its position in the 

“generalized” electromagnetic Kerr field of the hydrogen atom. The time dilation the electron 

experiences, is then stronger than in Dirac special relativity. The introduction of these added 

non-Euclidean relativistic effects produces predictions in better agreement with the observed 

hydrogen Balmer data. 
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                                             The Hydrogen Balmer Data 

A set of observed Balmer series hydrogen data was obtained from the text book: The Physics of 

Atom and Quanta, H. Haken, H. Wolf and W. Brewer, 6th Edition, 2004, Springer-Verlag. The 

data set from the text is: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The (in vacuo) Balmer series data in this text are in wavenumbers (in cm
-1

), which were 

converted to wavelengths in meters, for transitions from main shells n = 3 to n = 2, then n = 4 to 

n = 2, etc., up to n = 20 to n = 2. (18 data points.) The observed Balmer data are astrophysical, 

taken using astronomical spectroscopy. Assuming theory is correct, there must have been 

numerous (n) subshell -to- (n = 2) subshell transitions involved in these data. But only a single 

transition data point is listed for each Balmer transition. A single transition data value was 

assumed to be obtained from a weighted average, with weights based on the observed subshell-

to-subshell transition intensities. Past historical hydrogen lab spectroscopy shows the “humps” 

seen around a single transition were averaged with intensity weights to provide a single transition 

value. Or if the spectroscopic machine had relatively poor resolution (but apparently it was pretty 

good, as will be shown), nature itself weighted the single observed line.  

 

                                    Euclidean Dirac Theory Plus QED Results 

Ignoring hyperfine splitting, there are 3 sublevels for n = 2, the outer 2P3/2 (l = 1, magnetic) 

sublevel with QED, then the mid spherical 2S1/2 (l = 0, nonmagnetic) sublevel with QED, then 

the lowest 2P1/2 (l = 1, magnetic) sublevel with QED. In basic Dirac theory, the last two (without 

QED) are degenerate. Introducing QED effects/corrections “breaks the degeneracy.” The paper 
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at the following link provides the needed theoretical hydrogen subshell energies to use for a 

Balmer series prediction, with QED corrections: 

 

http://www.nist.gov/data/PDFfiles/jpcrd100.pdf 

 

The above NIST paper lists (p. 853) all of the predicted hydrogen subshell energies (in cm
-1

) 

with QED corrections for n = 1, 2, …, 8 and further. It is an older paper (1977), but the paper’s 

predicted values agree well with the current values listed at NIST. To get the 2P3/2, 2S1/2 and 

2P1/2 Dirac + QED predicted sublevels for the Balmer transitions, the values listed in the paper 

were used. For the analysis here, the “plus QED” subshell energies also listed in the paper for the 

Balmer series predictions for n = 3, …, 8 were used. The basic Dirac equation (without QED) 

was then used to compute predictions for n = 9, 10, … , 20. The basic Dirac equation used was 

eq. (2.4) of the above paper, listed here: 

 

 

 

 

 

where 2 2 1/21/ 2 [( 1 / 2) ]j j and  is the electron’s reduced rest mass in hydrogen. 

For the outer main shells, the QED corrections get very small, and no significant error is hence 

introduced if the QED corrections are omitted for these outer shells (9 to 20). 

 

Given the transition rules 0, 1, 1j l , the allowed transitions to the three n = 2 

sublevels are  

nP1/2 <-> 2S1/2 

nP3/2 <-> 2S1/2 

nS1/2 <-> 2P1/2 

nD3/2 <-> 2P1/2 

nD5/2 <-> 2P1/2 

nS1/2 <-> 2P3/2 

nD3/2 <-> 2P3/2 

nD5/2 <-> 2P3/2 

 

The procedure just described was used to predict the (18) transition wavelengths for each of the 

above transitions, using the NIST paper’s subshell QED-corrected energy values for n = 2, …, 8, 

and basic Dirac predictions without QED for n = 9, …, 20. The predictions were then compared 

to the observed data. For the nP1/2 <-> 2S1/2 transition, the results were 
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nP1/2 <-> 2S1/2 

Sample average prediction error = +2.67999673 x 10
-12

 m 

Sample standard deviation = 6.24440238 x 10
-13

 m 

Standard error (the above divided by 18 ) = 1.47181976 x 10
-13

 m 

5-sigma confidence interval = (+1.94408685 x 10
-12

,+3.41590661 x 10
-12

) m 

 

For this analysis, the individual observed, predicted, and prediction errors (wavelengths in m) 

were : 

 

n =  3    6.56460457E-007   6.56458428E-007   2.02947188E-012 

n =  4    4.86268507E-007   4.86265562E-007   2.94506857E-012 

n =  5    4.34168355E-007   4.34165816E-007   2.53871789E-012 

n =  6    4.10288897E-007   4.10286800E-007   2.09692431E-012 

n =  7    3.97119612E-007   3.97117175E-007   2.43736638E-012 

n =  8    3.89016659E-007   3.89012797E-007   3.86230807E-012 

n =  9    3.83648443E-007   3.83644966E-007   3.47726963E-012 

n =  10  3.79898795E-007   3.79895380E-007   3.41463844E-012 

n =  11  3.77170475E-007   3.77167950E-007   2.52416634E-012 

n =  12  3.75121774E-007   3.75119596E-007   2.17801972E-012 

n =  13  3.73543414E-007   3.73540825E-007   2.58900413E-012 

n =  14  3.72300680E-007   3.72297544E-007   3.13686476E-012 

n =  15  3.71303580E-007   3.71300543E-007   3.03669394E-012 

n =  16  3.70491398E-007   3.70488537E-007   2.86076901E-012 

n =  17  3.69820160E-007   3.69818252E-007   1.90774570E-012 

n =  18  3.69260128E-007   3.69258413E-007   1.71552799E-012 

n =  19  3.68787997E-007   3.68785943E-007   2.05362119E-012 

n =  20  3.68386948E-007   3.68383512E-007   3.43576319E-012 

 

The observed data (converted from the wavenumbers in the referenced text book) are in the first 

data column, the predictions are in the second column, and the differences (errors) are in the 

third (last) column. The magnitudes of the prediction errors (observed wavelength minus 

predicted wavelength) are ~10
-12

 m. The transition wavelengths themselves are ~10
-7

 m for the 

Balmer series, so the prediction errors are about 5 orders of magnitude smaller than the observed 

variable magnitude. This indicates both the model and the data are reasonably accurate and 

precise. The precision in the fit even allows for an evaluation of a/this model’s bias (inaccuracy). 

 

For the above, all 18 prediction errors were positive, indicating a model bias. The positive 

prediction errors say this analysis produced predicted transition wavelengths that are too short as 

compared to “the truth” given by the data. Some type of bias is to be expected, since the 

observed data involved more transitions than just this one. Using only this single transition, this 

“not complete” model represents a “too inflated” hydrogen atom relative to the “correct 

compression” manifest in the observed data. The predicted wavelengths were too small 

(observed > predicted) and too energetic, saying the inter subshell-to-subshell delta transition 
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energies were too large and “inflated” compared to the data. The 5-sigma confidence interval for 

the true mean prediction error also does not contain zero, indicating a model bias. As mentioned, 

this is to be expected, since the observed data undoubtedly contain other transitions involving 

stronger spin-orbit magnetic effects than does this single transition. 

 

The analysis was repeated for the other allowed Balmer transitions, producing the following 

results (values in m): 

 

Transition              Sample Average Prediction Error        Sample Standard Deviation 

         

nP1/2 <-> 2S1/2                +2.67999673 x 10
-12

                          6.24440238  x 10
-13

 

nP3/2 <-> 2S1/2                +3.06225625 x 10
-12

                          1.12816117  x 10
-12

 

nS1/2 <-> 2P1/2                        +3.30505964 x 10
-12

                          6.43759806  x 10
-13

 

nD3/2 <-> 2P1/2               +3.65092165 x 10
-12

                          1.34348622  x 10
-12

 

nD5/2 <-> 2P1/2               +3.77833809 x 10
-12

                          1.67893344  x 10
-12 

nS1/2 <-> 2P3/2                -2.80498295  x 10
-12

                          2.44089475  x 10
-12 

nD3/2 <-> 2P3/2                -2.45910605 x 10
-12

                          1.50638804  x 10
-12

 

nD5/2 <-> 2P3/2                -2.33168411 x 10
-12

                          1.18493865  x 10
-12

 

 

For each case with a positive average, all prediction errors were also positive. For those with a 

negative average, all prediction errors were negative. A negative result describes a model that is 

“too compressed” relative to the data. The predicted wavelengths are too large 

(observed < predicted), relating back to a too small subshell-to-subshell delta-energy difference. 

This type of bias is “too compressed” compared to the data, and is also to be expected for 

particular single transition models. 

 

An observed data value comes from a blend of all of these transitions, with the value of the 

single shell-to-shell value equal to a transition-intensity weighted average. The predicted weights 

could be computed to produce a single shell predicted value, and a better single shell prediction 

obtained to compare to the data. But, for comparison to the next atomic model, seeing the 

Euclidean Dirac + QED results for these separated-out transitions will be informative. 

 

                              Non-Euclidean Eelectromagnetic Kerr Theory Results 

The next atomic model used to compare to the hydrogen data is based on  non-Euclidean 

spacetime differential geometries. For spherical subshells (n, l = 0, j = ½), the time dilation the 

electron experiences in this (special case) spherical non-Euclidean field theory is given as 
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                   (1) 

 

 

where the electronic Schwarschild radius (defined by the extended Gravitoelectromagnetic 

Equivalence Principle) is 
2

02 2S e p e er e e m c m c  where em  is the electron’s rest mass, 

not its reduced rest mass. But as in Euclidean Dirac theory, the reduced rest mass  of the 

electron must be used in the energy equations. (Please see the Appendix for a derivation of the 

electronic Schwarzschild radius Sr .) This time dilation (1) is electronic only in form, per the 

definition of Sr , which shows it is only defined for a system of two charges (and conforms to 

muonic hydrogen, e.g.). Note the mass and charge of the electron themselves (and the charge of 

the proton) set the basic non-Euclidean Schwarzschild structure of the field within which the 

electron orbits. Hence, if the mass of the orbiting body changes, for example, like in muonic 

hydrogen,  the entire metric structure shifts to accommodate the new two-body system. A main 

effect of using a non-Euclidean field theory, is the introduction of the position-dependent field 

contribution to the total time dilation, with the necessary inclusion of the S nr r  term. The time 

dilation is hence greater than in special relativity. 

 

The Schwarzschild electron orbital radius and velocity ( nr  and nv ) in the n
th

 spherical subshell 

(needed in the time dilation (1)) are initially given by 

                   (2) 

                    

 

where Br  and Bv  are the nonrelativistic Bohr radius and velocity for the respective n
th

 spherical 

main shell. Using Bohr values provides only initial approximate values for the needed 

Schwarzschild rn and vn and the non-Euclidean time dilation. Due to the nonlinear nature of 

non-Euclidean field theory, numerical iterations are useful, and sometimes required. Double 

precision numerical iteration to convergence provides essentially theoretically exact results. To 

compute a correct value of the Schwarzschild time dilation for a given n, the values of rn and vn 

are initialized at their Bohr values (eq. 2) (initialize the time dilation to 1), and then the time 

dilation (eq. 1) is updated. Next, the updated time dilation is used to compute new Schwarzschild 

relativistic values of rn and vn, per (2). These updated radius and velocity values are then 

reinserted into the time dilation eq. (1), and the iteration continued until convergence. Note 

therefore, time dilation is quantized, as it is in Euclidean Dirac theory. 
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Given the converged values of orbital radius, velocity and time dilation, the non-Euclidean 

electronic spherical (Schwarzschild) total orbital energy the electron experiences is given as 

 

                                         (3) 

 

where now the electron’s reduced rest mass  resides in this equation. While equation (3) looks 

completely gravitational in identity (allowed by the extended Gravitoelectromagnetic 

Equivalence Principle) it is in fact completely electronic in form, and specific to a system of 

bound charges (here, hydrogen). Nowhere in this equation does Newton’s gravitational constant 

G appear. 

 

These equations are specific for the exact spherical symmetry of a Schwarzschild geometry, so 

while not explicitly in the equations, the Dirac quantum numbers are j = ½ and l = 0 (true S 

subshell). The Dirac quantum number s is also unimportant here. No electron-spin-magnetic 

effects are present due to the complete spherical symmetry of a Schwarzschild field. 

 

To incorporate non-Euclidean spin-orbit magnetic effects, the differential geometry can be 

generalized to that of Kerr. (In the gravitational world, this predicts gravitomagnetism, as was 

successfully observed by Gravity Probe B in orbit about the spinning mass of the Earth.) The 

extended Gravitoelectromagnetic (GEM) Equivalence Principle allows electromagnetism to be 

represented as a type of non-Euclidean electromagnetic Kerr “frame dragging,” which suggests a 

“unification” of “electro-” and “gravito-” magnetisms. 

 

The electromagnetic Kerr 4 x 4 timelike metric tensor, in spherical polar spacetime coordinates

( , , , )Tr tx , is (dropping orbital indexing for now): 

 

 

                              (4) 
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Along with the electronic Schwarzschild Sr , the electromagnetic Kerr “frame dragging parameter 

a” enters the equations The final forms of these equations are completely electromagnetic. 

Newton’s G does not appear anywhere. It should also be stressed, especially so here, the 

“magnetism” modeled here is “central” in that it is accorded to the “spin of a central body,” as 

easily modeled with non-Euclidean field theory. This is the analog in Euclidean theory, where 

the electron’s current-loop orbital motion sets up an “effective centrally located” magnetic N-S 

dipole, creating the “central” magnetic field within which the electron orbits. This is also the 

basis for the spin-orbit interaction. Here, in the non-Euclidean field theory, the centrality of the 

dominant magnetism is also maintained, with the frame dragging parameter a defined as 

proportional to the “spin” of a “central body.” 

 

For any generalized 4-D spacetime geometry, the generalized time dilation equals 

 

                   (5) 

      

 

(Equation (5) is obtained by rewriting the usual form of the metric, with 
2d  on the left.) 

Expansion of the quadratic form for a Kerr geometry shows, for equatorial circular obits, the 

Kerr electromagnetic time dilation simplifies to 

 

                   (6) 

 

where subindexing by the main shell number n has been reintroduced. The correct value of an is 

to be determined shortly. 

At this point, the rest of the full set of Dirac quantum numbers n, j, l and s are inserted into in the 

equations as follows. The principle magnetic interaction in hydrogen is the spin-orbit magnetic 
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interaction, the value of which is “directed” by full set of Dirac quantum numbers. Deterministic 

quantum theory shows the spin-orbit delta-energy of orientation, of the (anomalous) magnetic 

moment of the electron is 

 

 

 

                   (7) 

 

 

 

The full set of Dirac quantum numbers reside in (7). With the rules 0soE  for j = ½ 

regardless of l, and s always equals ½, the Dirac quantum numbers direct the sign and magnitude 

of the spin-orbit delta-energy. The observed anomalous electron magnetic “g-factor” 

2.0023193eg  was incorporated into the computations/predictions. Note that the addition of 

the Thomas precession of Euclidean special relativity has not been included. (If it were, (7) 

would be multiplied by ½.) In non-Euclidean field theory, such a precession is not warranted. 

The authors MTW in their text book “Gravitation” state on (the bottom of) p. 1118: “The 

Thomas precession comes into play for a gyroscope on the surface of the Earth (a = Newtonian 

acceleration of gravity), but not for a gyroscope in a freely moving satellite.” If non-Euclidean 

modeling is used, as done here, then no Thomas precession should be incorporated. The 

mathematical physics is explained by MTW. The scaling of the problem is irrelevant. For both 

macroscopic or microscopic geodesic motion, if differential geometry is used to model the 

coasting motion of gyroscopes (such as the electron), no Thomas precession should be included 

in the theory. Also, strictly speaking, the use of only a classic Coulomb potential is not general 

enough in this non-Euclidean field theory, but the above energy will be involved in the time 

dilation numerical convergence, which reduces the error in theory. From a probabilistic 

expectation standpoint, the use of the deterministic inverse of 
3

nr  is tantamount to using a 

“maximum pdf/maximum mode” population moment, also a valid measure of central tendency in 

mathematical statistical theory. 

  

To incorporate electromagnetic Kerr frame dragging effects, the electromagnetic Kerr total 

orbital energy shows the route. This energy is generally (for all orbits, not just circular 

equatorial) 

 

                   (8) 
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An important character of the structure of the Kerr energy equation is its perturbation nature, 

right in the equation. The aspherical magnetic term involving a is simply added to the spherical 

Schwarzschild term.  

 

For equatorial circular orbits, the Kerr energy equation simplifies to 

 

 

                   (9) 

 

 

An expansion of (9) separates the energy into individual nonmagnetic and magnetic terms. An 

isolation of the terms involving the magnetic spin-orbit an produces 

 

 

                 (10) 

 

 

Please note, while not subindexed as so, the quantized time dilation is also a function of n. Also, 

the rn and vn are now even more “general” than in the Schwarzschild theory; they are now the 

quantized Kerr orbital radii and velocities. Computational results for hydrogen show, though, the 

converged-upon Kerr radii and velocities are very nearly equal to their Schwarzschild values. 

 

The extended GEM Equivalence Principle allows setting equality between equations (7) and 

(10). Setting these equations equal results in 

 

 

                 (11) 

 

 

 

 

 

Equation (11) is a parabola in an, and has all Dirac quantum numbers correctly incorporated. The 

solution for an is found by root taking. Set 
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The parabola is now 

 

 

 

so that 

 

 

 

                 (12) 

 

 

Numerical computations show the positive root has the physically correct sign. The full set of 

Dirac quantum numbers now reside in the quantized electromagnetic Kerr total orbital energies. 

When l = 0, j must equal ½, and an,j,l,s equals zero (magnetic 0 0 ). The field theory then drops 

to the nonmagnetic Schwarzschild (spherical) field theory as the special case. The two 

electromagnetic “characteristic lengths” Sr  and an,j,l,s (devoid of G) enter the Kerr metric, and 

completely specify the structure of the Kerr electromagnetic spacetime for given values of the 

Dirac quantum numbers. Note this model is “adaptive” in the sense each sublevel has its own 

electromagnetic Kerr metric structure, as an,j,l,s (the frame dragging, i.e., the spin-orbit 

magnetism) discretely changes from subshell to subshell. As in the Schwarzschild case, the 

added nonlinear field effects change the time dilation. The frame dragging parameter an,j,l,s must 

enter the time dilation iteration, and then both converge on their correct Kerr values, now with all 

Dirac quantum numbers directing the convergence. 

 

Euclidean QED effects can be inserted into the non-Euclidean theory by adding to 0 . The 

dominant electron self energy and vacuum polarization effects, plus additional spin-orbit effects 

where appropriate (l not 0, j not 1/2), were included by computing QED delta-energies using eqs. 

(2.10) and (2.11) of the NIST paper. These were combined as 
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For hydrogen, Z = 1. The Dirac delta function is: 0 1l  if l = 0 and 0 0l  if l not zero. The 

correct Bethe logarithm value of nL  was obtained from Appendix B of the NIST paper (p. 846). 

The Clj coefficients were obtained from 

 

 

 

 

 

To incorporate these Euclidean QED effects, eq. (13)’s value was added to the frame dragging 

0  as 

 

 

 

where soE  is given by (10). This forces convergence to an aspherical Kerr structure, even for 

the “truly spherical” QED-effected nS1/2 subshells in Euclidean Dirac theory. In this 

non-Euclidean theory, the only way to model aspherical (non-Schwarzchild) subshells is to 

introduce frame dragging, using the more general magnetic Kerr theory. In this atomic EM Kerr 

theory, there are no “truly spherical” subshells, where QED effects necessarily must enter as a 

type of “magnetic frame dragging” in an atomic Kerr field.  

 

The EM Kerr theory predicts the correct observed Lamb shift for the 2S1/2 <-> 2P1/2 transition, a 

value of about 1057.9 MHz. It certainly should, since the known QED equations (which work) 

were used to “perturb” the Kerr theory through the use of a frame dragging “magnetic Kerr QED 

perturbation.” It may be that the Euclidean QED effects/corrections can (and should) be 

generalized to this non-Euclidean theory, but certainly to at least “first order,” utilizing 

Euclidean QED corrections should suffice. 

 

The electromagnetic Kerr field theory, plus Euclidean QED effects, was used to compute 

subshell energies and energy differences, and non-Euclidean Kerr predicted transition 

wavelengths. The results for the various non-Euclidean Kerr transitions were: 
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Transition          Sample Average Prediction Error         Sample Standard Deviation 

         

nP1/2 <-> 2S1/2              -1.41541844  x 10
-12

                           9.90931632  x 10
-13 

nP3/2 <-> 2S1/2              -1.39289224  x 10
-12

                           9.28804717  x 10
-13 

nS1/2 <-> 2P1/2                     -8.15820025  x 10
-13

                           7.87117712  x 10
-13 

nD3/2 <-> 2P1/2             -8.90760434  x 10
-13

                           9.79578024  x 10
-13 

nD5/2 <-> 2P1/2             -7.82118938  x 10
-13

                           7.13946213  x 10
-13 

nS1/2 <-> 2P3/2              -2.35573711  x 10
-12

                           1.3059391    x 10
-12 

nD3/2 <-> 2P3/2             -2.43067839  x 10
-12

                           1.54557663  x 10
-12 

nD5/2 <-> 2P3/2             -2.32203562  x 10
-12

                           1.19560858  x 10
-12 

 

Comparison with the Euclidean Dirac + QED results show these non-Euclidean models fair 

noticeably better. The sample average prediction errors and standard deviations are generally 

smaller, indicating an increase in accuracy and precision. These results would seem to support 

the assumption of the physical presence of stronger relativistic effects in hydrogen than just 

Euclidean special. The first jump to spherical Schwarzschild theory shows the general magnitude 

of these non-Euclidean effects. The electronic Schwarzschild time dilation is (eq. (1) in this 

paper) 

 

  

 

 

 

For hydrogen, 
1510Sr  m. The ground state radius of hydrogen equals about 10

-11
 m. The ratio 

410S nr r , essentially as significant as introducing Euclidean special relativity itself , since 

2 4( ) 10nv c . 

 

In these non-Euclidean equations, exclusive use of their simplifications to “circular, equatorial” 

forms has been utilized. This is allowed, even for “P” or “D” of “F”, etc., “elliptical” subshells. 

The reason why, is how “ellipticity” is represented in Kerr theory. The Kerr field itself “goes 

elliptical” when the frame dragging a is not zero. Completely conserved circular and equatorial 

relativistic Kerr geodesics are possible, even in the aspherical field. In classic Sommerfeld 

theory, with its assumed spherical symmetry of the potential (as in Dirac theory), ellipticity 

demanded elliptical orbits. But in this generalized orbit theory, it’s the field that “goes elliptical” 

while the orbit itself remains perfectly circular, with conservation of the (shifted) relativistic Kerr 

total circular orbital energy and angular momentum. Such is the amazing “plasticity” of a Kerr 

geometry, and the generalization of the field geometry used for atomic modeling to Kerr seems 

to produce predictions closer to nature. 
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Hydrogen’s hyperfine splitting can be inserted into the Kerr theory in an easy manner. The 

(electron spin)-(proton spin) hyperfine orientation delta-energy contributing to the electron’s 

total orbital energy is 

 

                 (14) 

 

where the quantum numbers F and I are the (Fermi) proton spin related quantum numbers. The 

value of I is always ½, and for n = 1,2, F can take on the two values of 0 and 1. For hydrogen’s 

ground state (n = 1), the value of ˆ / 2A  can be obtained very accurately from 

experimentation, and equals ˆ / 2   1420.405751768 MhzA  

 

The spin-spin hyperfine delta energy can be easily incorporated in the Kerr theory by simply 

summing it with the spin-orbit and QED delta energies. The (negative of the) total (sum of the) 

spin-orbit, QED and spin-spin (hyperfine) delta energy is set equal to the constant 0  term in 

solving for the electromagnetic Kerr frame dragging parameter a: 

 

 

 

Upon root solving, this produces an electromagnetic Kerr frame dragging parameter an,j,l,s,F,I  

which is now a function of all of hydrogen’s quantum numbers, Dirac and Fermi, and with 

Euclidean QED effects incorporated.. The hyperfine splittings were programmed into the 

electromagnetic Kerr transition wavelength predictions, and due to their low value of energy 

shifts, they did not produce significantly different results as compared to those last reported. 

 

                                           Conclusion, and Further Theory 

The following conclusion seems inescapable: There exists stronger non-Euclidean relativistic 

effects in hydrogen as compared to what is predicted by Euclidean Dirac theory. The better 

agreement of the predictions by the non-Euclidean Kerr field theory with the observed data 

suggest the electron is experiencing a greater amount of time dilation as previously thought. The 

increase in time dilation, above and beyond Euclidean theory, is due to not only the electron’s 

velocity (v), but also its position (r) in a generalized atomic electromagnetic Kerr field. 

 

Perhaps the entirety of Euclidean-based QM should be generalized to a more non-Euclidean field 

theory. The generalization starts with a generalization of Schroedinger’s equation: 
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                 (15) 

 

The inserted energy functionality on both r and v sets up the jump to a more “generalized” 

geometry. To immediately generalize this differential equation for a bound two-body system, the 

total and potential energy equations are identified with the electromagnetic Kerr circular, 

equatorial equations: 

                 (16) 

 

 

and 

 

                 (17) 

 

 

These energy equations are obviously more complicated than Euclidean theory (comes with 

being more “general”), but the tremendous simplicity of their circular, equatorial cases should 

reduce solution complexity. The results would naturally include magnetism as part of the metric 

structure, per the inclusion of a in the equations. Recall in non-Euclidean field theory, 

magnetism is model by a field warp, not an orbit shape shift, and circular equatorial orbit theory 

suffices, even when Kerr magnetic fields exist. Kerr-Schroedinger circular wave equation 

solutions could be found, and then Born probability introduced. If “maximum pdf/maxim mode” 

moments are used, essentially “deterministic orbit theory” is the result, and the equations 

presented here fall out from this hypothesized generalized Kerr-Schroedinger-Born theory. As 

proven here,  this generalization of forces in hydrogen produces predictions in better agreement 

with its observed Balmer spectral signature. 
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                                                            Appendix 

 

The extended GEM Equivalence Principle (EP) allows setting the electronic force on the electron 

while in a subshell, equal to any other (equal) force, inertial or field induced. Bohr used this 

“extension” of Einstein’s EP by equating the electronic force on the electron, to the electron’s 

“inertial” force: 

 

 

               (A.1) 

 

 

The right of  (A.1) comes from simply “F = ma,” but the force on the right is actually a field 

induced force. For extension of the simple Euclidean theory into the general non-Euclidean 

domain, the GEM EP allows deriving a type of “equivalent gravitational force model” for 

insertion on the right. The obvious candidate is 

 

 

               (A.2) 

 

 

The right side of (A.2) is an “effective gravitational force.” This effective force exactly equals 

the electronic force on the left. The “unification curvature parameter”  is a mass-to-charge 

ratio which converts the proton’s charge pe  into an amount of “effective mass” which produces 

exactly the same magnitude of electronic binding forces. 

 

Solving for  produces 

 

 

               (A.3) 

 

 

In the effective gravitational model, the effective central mass pe  binds the electron’s mass em  

into orbits allowed by the exact same magnitude of the actual electronic binding forces. 

 

The simple extension into non-Euclidean geometries is made by utilizing the definition of the 

“gravitational radius,” that is, the Schwarzschild radius in gravitational Schwarzschild theory. In 

gravitational theory this radius is 
22 /Sr GM c  where M is the rest mass of the central body. 

Inserting the effective central mass pM e  into this equation produces the electronic 

Schwarzschild radius, devoid of G: 
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               (A.4) 

 

 

This “characteristic length” then enters the elements of a Schwarzschild metric tensor, defining a 

tightly-curved, atomic-sized electronic Schwarzschild field. 
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