
These derivations are quoted directly from Chapter 3, Section 2, beginning on p. 70 of

Steven Weinberg’s book Gravitation and Cosmology, Principles and Applications of the

General Theory of Relativity, a John Wiley publication, 1972. Dr. Weinberg states:

“2. Gravitational Forces

Consider a particle moving freely under the influence of purely gravitational forces.

According to the Principle of Equivalence, there is a freely falling coordinate system ξα  in

which its equation of motion is that of a straight line in space-time, that is,
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with dτ  the proper time

d d dτ η ξ ξαβ
α β2 = − (3.2.2)

[Compare Eqs. (2.3.1) and (2.1.4).] Now suppose that we use any other coordinate

system xµ , which may be a Cartesian coordinate system at rest in the laboratory, but also

may be curvilinear, accelerated, rotating, or what we will. The freely falling coordinates

ξα  are functions of the xµ , and Eq. (3.2.1) becomes
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Multiply this by ∂ ∂xλ αξ , and use the familiar product rule
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This gives the equation of motion
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where Γµν
λ  is the affine connection, defined by
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The proper time (3.2.2) may also be expressed in an arbitrary coordinate system,
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or

d dx dxτ µν
µ ν2 = −g (3.2.6)

where g µν  is the metric tensor, defined by
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This ends the quoted derivation of the geodesic equation taken from Section 2 of

Chapter 3 of Dr. Weinberg’s book. For a note of clarification of what the ηαβ  are in

Eq. (3.2.2), I further quote from Chapter 2 on Special Relativity, p. 26:

“A Lorentz transformation is a transformation from one system of space-time

coordinates xα  to another system ′x α , so that

′ = +x x aα
β
α β αΛ (2.1.1)

where aα
β
α and Λ  are constants, restricted by the conditions
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In our notation α β γ, ,  and so on, will always run over the four values 1, 2, 3, 0, with

x x x1 2 3, ,  the Cartesian components of the position vector x and x0 the time t.”

In the first paragraph of Chapter 3, Section 2, Dr. Weinberg states that the coordinate

system xµ  “may be a Cartesian coordinate system at rest in the laboratory.”  Setting the

xµ  as such, it is then easy to interpret the metric tensor g µν  given by Eq. (3.2.7) as a

metrification of the degree of curvature of the non-Euclidean space-time representing the

gravitational field responsible for causing the “falling” of the test particle in the coordinate



system xµ , i.e., in the Cartesian laboratory coordinate frame, whose three spatial

coordinates are Euclidean. Then, the affine connection Γµν
λ  given by Eq. (3.2.4) is

understood as the “connection coefficients” between the zero accelerations seen in the

“freely falling” frame (see Eq. (3.2.1)) and the non-zero accelerations seen in the

laboratory frame, as given by a simple manipulation of Eq. (3.2.3):
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If you don’t believe that Γµν
λ  represents a type of “connection” between the freely falling

frame and the laboratory frame, you need to convince yourself of the validity of the

derivation of Eq. (3.2.4).

It is exactly these laboratory coordinate frame accelerations that need to be

numerically integrated in order to numerically map out the generally relativistic motion of

a test particle in a gravitational field that pervades the laboratory, and whose metric tensor

elements are known functions of the laboratory frame coordinates. One of the great things

about the geodesic equation is that it is “coordinate type invariant” meaning that even

though we have here interpreted the spatial xµ  as the rectangular Cartesian coordinates of

the laboratory frame, they can just as well be viewed as their corresponding spherical polar

coordinates. Since the Schwarzschild metric tensor, for example, is usually expressed in

these polar coordinates, this allows one to immediately derive the laboratory polar

coordinate proper time accelerations that need to be numerically integrated to produce full

generally relativistic motion in the Cartesian laboratory coordinate frame (see my paper at

http://www.mindspring.com/~sb635/pap1.htm).


